ALGORITHMS

2L = =
= ==::
= =
—— e ——a
== alr
—— g

—= i = =
=2~ u-h
\ —”

Objective
To be able

to identify constants and variables in a simple problem
to define the type of a constant

to explain an algorithm

to describe a simple problem using an algorithm

Why do we need algorithms ?

Algorithms help for all these issues.

Our world needs more and more technical
solutions, more ergonomics and wants to find
answers when new problems appear.
Our powerful computers are able to manage
billions of operations in a few seconds, but
they need powerful softwares to organize the
operations.
To communicate and to explain things, to deal
with difficulties and maintenance a team has to
use description tools.

For example the picture below represents a complicated shape that
was found by a designing program. It's an antenna that creates the
best radiation pattern. A lot of engineers worked on this project and
they needed powerful algorithms to produce this result.

Aurore DALLONGEVILLE - Norbert BRAUN 2014

What is an algorithm ?

An algorithm is a simple way to describe the resolution of a problem.
It explains step by step what to do to solve the problem , but not How to do
it.
o Like a problem, an Algorithm always has a
BEGINning and an END
o It's composed by

several steps and BQS:,\
each step solves a

part of the problem. ln.‘f{a/i}c ’

o The more complex 3]

.' the problem, the D'Sf’(“)/ ’
more steps you R anlicatibes
need. s ‘W’ i

o Each task can be a smaller problem, with De/dt,_o‘/,'

its own algorithm J
en

What an algorithm is not...

o It's not a magic box. You have to
understand the problem before you start the
algorithm

o It's not a programming language. With a

SO'Uti Aagaprogramming language you'll defi_ne how to solve
\ the problem. But for some simple problems,
e=algorithms are quite similar to a computing
language.
o It's not a software. You don't need a computer and it's better to
write it on a piece of paper
o It's not a gadget : it helps us to explain, simplify and solve complex
guestions.

Algorithm formalization
Algorithm composition

Linear algorithm

As we saw in a previous chapter, an algorithm :

e is the main description of a problem, or the description of a step from the main
algorithm;

e starts with the keyword BEGIN;

¢ ends with the keyword END;

e is composed by simple words (often action verbs) which describe the operation.

Example

BEGIN e X:\En chantier\ISN\mes_cours\ISN_Algo\tp_algo\tp_algo_...
prompt; What is your name ?
get_name; Dan
write_hello; Hello Dan
exit_app; <<Type Q to Exit>>
END

In this simple example :
o prompt displays the text "What is your name ?";
o get_name waits for the typing by the user;
o write_hello writes the text "Hello" on the screen, followed by the text written
before;
o exit_app writes the text "<<Type Q to Exit>> on the screen and closes the
application when the user types the letter Q.

Each of these steps could be a complex operation.
In this case, it's possible to make an algorithm for each of them. We'll talk about sub-
algorithm in this case.

An Algorithm is also composed of symbols (constants and variables), of functions and
procedures and of some standardized pseudo-codes.

Symbols

It's possible to define a symbol which is equivalent to a constant or variable value.

Constant symbol

A constant is a piece of information which never changes in an algorithm.
In the previous example, the text "What is your name?" is a constant string.
The number IT = 3,1416.... is a constant number.

Variable symbol
A variable is a piece of information which changes all along the algorithm or in an
algorithm'’s life.
In the previous example, the name changed (one time Dan, another time Sally, etc...);
it's a variable string.

Type of a constant or a variable
A constant or a variable actually is a piece of memory in the computer. It's necessary
to define the number of memory cells needed by each variable or constant.
A byte needs more memory than a bit, a string more than a byte, etc....
Common types are :
o bit:0or1l
byte : 8 bits from 0 to 254 (or -128 to +127)
integer : from -32768 to 32767
word : it's a double byte
double (word) : 32 bits
float (ing number) : 32bits to describe a rational number with a sign.
char(acter) : it contains one letter
string : it's a sequence of characters (most of the time with a maximum of 256)

0 O O O O O O

The get_name and write_hello algorithm could be written like this :

Algorithm get_name

read is a standard command which
affects to its argument the string typed
by a user. The ENTER key defines the
end of the word.

For example when the user types the
keys on the keyboard:

[Dl[A|N][ENTER]

the variable name is equal to DAN

var name:string; //name is a global string variable

Algorithm write_hello

BEGIN BEGIN
read(name); write(‘"Hello'+name);
END END
Explanation

write is a standard command which writes
the argument text on the screen. This
command displays the text between
quotes. When there are no quotes, it
should be a constant or a variable and in
this case, this command displays its value.
For example, when name=Sally, the
screen display will be Hello Sally.

Global and local symbols

e A global symbol is a symbol declared in the main Algorithm and is accessible in

multiple scopes (in all the sub algorithm)

e A local symbol is declared within a sub algorithm and is not accessible in the other

one.

In our example, the variable name must be accessible in get_name and in write_hello. It

must be a global variable.

Procedure and Function

In a program's source code, the main program is the translation of the main algorithm.
The sub-algorithm could be a procedure or a function.

Procedure

A procedure is a part of a program (a sub-algorithm) that performs something : displaying
a piece of information, saving a file, printing a text, etc....
In our example prompt, get_name, wite_hello are procedures.

Function

A function is also a part of a program that performs and calculates something. It returns a

result to the caller.
Example :
function RandomVal :integer;
begin
/I Get a random number from 1 to 3

/I Return this value as a int type in the return variable, Result

Result := RandomRange(1, 3);
end:

To use this function : Aleat:=RandomVal;

Pseudo-code

Pseudo-codes are special commands for
= conditional statement : IF.... THEN.. ELSE, CASE.... OF.
= |terative statement : WHILE... DO, REPEAT...UNTIL

Conditional statement
A conditional statement is a rule which helps to decide what to do depending on a
variable value.
There are two types of conditional statements :

If (condition) then bodyl else }i: icemaitiom

body2 : If the condition of the 34
operator ‘if-else' is true, it I

passes the control to the first

operator in body 1. After all| | z1se 1
operators in body 1 have been body1 [body2]
executed, it passes control to -

the operator that follows the ™ 1

operator 'if-else’. If the

condition of the operator 'if-else’ is false, then:
- if there is the key word 'else' in the operator 'if-else’, then it passes the control
to the first operator in body 2. After all operators in body 2 have been executed,
it passes control to the operator that follows the operator 'if-else’;
- if there is no key word 'else’ in the operator 'if-else’, then it passes the control
to the operator that follows the operator 'if-else’.

CASE (variable) OF.... : The CASE operator provides a structured equivalent to a
sequence of IF... THEN... ELSE statements on the same variable.
The CASE statement is more elegant, more efficient, and easier to maintain than
multiple IF.. THEN... ELSE nestings.
Example :
CASE age OF
0..3: write('Baby");
4..14 : write('child’);
14..18 : write (‘'Teenager’)
19..150 : write("Adult);
END;

Comment : In some computing languages (C, PHP, java...) the CASE statement is
replaced by a SWITCH statement.

Iterative statement
Iteration statements are used to specify the logic of a loop.
There are three kinds of rules :
FOR (condition of the loop) DO : this statement is used when the number of loops is
known.
Exemple :
FOR i:=0 TO 9 DO write(i+"");
The result will be 0:1:2:3:4:5:6:7:8:9:

WHILE (condition) DO : The
WHILE keyword starts a control
loop that is executed as long as
the condition is satisfied. The loop
IS not executed at all if the
expression is false at the start.

\ while (cordidicoa)

’—(- YES
Hi
I bod y

|

REPEAT... UNTIL (condition) : The REPEAT keyword starts a control loop that is
always executed at least once, and which terminates when the condition is satisfied.

Example :
REPEAT
write("Type Q to quit');
read(c);
UNTIL (c='Q";
Break the loop when the Q character is typed on the keyboard.
Vocabulary
|Algorithm ||Algorithme |
[function |[fonction |
key |lclé / touches dans le cas d'un clavier |
lkeyboard |clavier |
|programming language ||Iangage de programmation |
|a prompt ||une invite (de commande par exemple) |
step by step ||étape par étape |

Istring (of letters) ||chalne de caractéres

