

Aurore DALLONGEVILLE - Norbert BRAUN 2014

ALGORITHMS

Objective
To be able

 to identify constants and variables in a simple problem

 to define the type of a constant

 to explain an algorithm

 to describe a simple problem using an algorithm

Why do we need algorithms ?
 Our world needs more and more technical

solutions, more ergonomics and wants to find
answers when new problems appear.

 Our powerful computers are able to manage
billions of operations in a few seconds, but
they need powerful softwares to organize the
operations.

 To communicate and to explain things, to deal
with difficulties and maintenance a team has to
use description tools.

Algorithms help for all these issues.

For example the picture below represents a complicated shape that
was found by a designing program. It's an antenna that creates the
best radiation pattern. A lot of engineers worked on this project and
they needed powerful algorithms to produce this result.

Algorithm thinking

2 / 6

What is an algorithm ?

An algorithm is a simple way to describe the resolution of a problem.
It explains step by step what to do to solve the problem , but not How to do

it.
o Like a problem, an Algorithm always has a

BEGINning and an END

o It's composed by
several steps and
each step solves a
part of the problem.

o The more complex
the problem, the
more steps you

need.
o Each task can be a smaller problem, with

its own algorithm

What an algorithm is not...
o It's not a magic box. You have to

understand the problem before you start the
algorithm

o It's not a programming language. With a
programming language you'll define how to solve
the problem. But for some simple problems,
algorithms are quite similar to a computing

language.
o It's not a software. You don't need a computer and it's better to

write it on a piece of paper
o It's not a gadget : it helps us to explain, simplify and solve complex

questions.

Algorithm formalization
Algorithm composition

Linear algorithm
As we saw in a previous chapter, an algorithm :

 is the main description of a problem, or the description of a step from the main
algorithm;

 starts with the keyword BEGIN;

 ends with the keyword END;

 is composed by simple words (often action verbs) which describe the operation.

Algorithm thinking

3 / 6

Example

BEGIN
prompt;
get_name;
write_hello;
exit_app;

END

In this simple example :

o prompt displays the text "What is your name ?";
o get_name waits for the typing by the user;
o write_hello writes the text "Hello" on the screen, followed by the text written

before;
o exit_app writes the text "<<Type Q to Exit>> on the screen and closes the

application when the user types the letter Q.

Each of these steps could be a complex operation.
In this case, it's possible to make an algorithm for each of them. We'll talk about sub-
algorithm in this case.

An Algorithm is also composed of symbols (constants and variables), of functions and
procedures and of some standardized pseudo-codes.

Symbols

It's possible to define a symbol which is equivalent to a constant or variable value.

Constant symbol
A constant is a piece of information which never changes in an algorithm.

In the previous example, the text "What is your name?" is a constant string.

The number = 3,1416.... is a constant number.

Variable symbol
A variable is a piece of information which changes all along the algorithm or in an
algorithm's life.

In the previous example, the name changed (one time Dan, another time Sally, etc...);
it's a variable string.

Type of a constant or a variable
A constant or a variable actually is a piece of memory in the computer. It's necessary
to define the number of memory cells needed by each variable or constant.
A byte needs more memory than a bit, a string more than a byte, etc....
Common types are :

o bit : 0 or 1
o byte : 8 bits from 0 to 254 (or -128 to +127)
o integer : from -32768 to 32767
o word : it's a double byte
o double (word) : 32 bits
o float (ing number) : 32bits to describe a rational number with a sign.
o char(acter) : it contains one letter
o string : it's a sequence of characters (most of the time with a maximum of 256)

Algorithm thinking

4 / 6

The get_name and write_hello algorithm could be written like this :

var name:string; //name is a global string variable

Algorithm get_name
BEGIN

read(name);
END

 Algorithm write_hello
BEGIN

write('Hello'+name);
END

Explanation

read is a standard command which
affects to its argument the string typed
by a user. The ENTER key defines the
end of the word.
For example when the user types the
keys on the keyboard:

D A N ENTER

the variable name is equal to DAN

 write is a standard command which writes
the argument text on the screen. This
command displays the text between
quotes. When there are no quotes, it
should be a constant or a variable and in
this case, this command displays its value.
For example, when name=Sally, the
screen display will be Hello Sally.

Global and local symbols

 A global symbol is a symbol declared in the main Algorithm and is accessible in
multiple scopes (in all the sub algorithm)

 A local symbol is declared within a sub algorithm and is not accessible in the other
one.

In our example, the variable name must be accessible in get_name and in write_hello. It
must be a global variable.

Procedure and Function

In a program's source code, the main program is the translation of the main algorithm.
The sub-algorithm could be a procedure or a function.

Procedure
A procedure is a part of a program (a sub-algorithm) that performs something : displaying
a piece of information, saving a file, printing a text, etc....
In our example prompt, get_name, wite_hello are procedures.

Function
A function is also a part of a program that performs and calculates something. It returns a
result to the caller.

Example :
function RandomVal :integer;
 begin
 // Get a random number from 1 to 3
 // Return this value as a int type in the return variable, Result
 Result := RandomRange(1, 3);
 end;

To use this function : Aleat:=RandomVal;

Algorithm thinking

5 / 6

Pseudo-code

Pseudo-codes are special commands for

 conditional statement : IF.... THEN.. ELSE, CASE.... OF.
 Iterative statement : WHILE... DO, REPEAT...UNTIL

Conditional statement
A conditional statement is a rule which helps to decide what to do depending on a
variable value.
There are two types of conditional statements :

If (condition) then body1 else
body2 : If the condition of the
operator 'if-else' is true, it
passes the control to the first
operator in body 1. After all
operators in body 1 have been
executed, it passes control to
the operator that follows the
operator 'if-else'. If the
condition of the operator 'if-else' is false, then:

- if there is the key word 'else' in the operator 'if-else', then it passes the control
to the first operator in body 2. After all operators in body 2 have been executed,
it passes control to the operator that follows the operator 'if-else';
- if there is no key word 'else' in the operator 'if-else', then it passes the control
to the operator that follows the operator 'if-else'.

CASE (variable) OF.... : The CASE operator provides a structured equivalent to a
sequence of IF... THEN... ELSE statements on the same variable.
The CASE statement is more elegant, more efficient, and easier to maintain than
multiple IF.. THEN... ELSE nestings.
 Example :
CASE age OF

0..3: write('Baby');
4..14 : write('child');
14..18 : write ('Teenager')
19..150 : write('Adult');

END;

Comment : In some computing languages (C, PHP, java...) the CASE statement is
replaced by a SWITCH statement.

Iterative statement
Iteration statements are used to specify the logic of a loop.
There are three kinds of rules :

FOR (condition of the loop) DO : this statement is used when the number of loops is
known.
Exemple :
 FOR i:=0 TO 9 DO write(i+':');
The result will be 0:1:2:3:4:5:6:7:8:9:

Algorithm thinking

6 / 6

WHILE (condition) DO : The
WHILE keyword starts a control
loop that is executed as long as
the condition is satisfied. The loop
is not executed at all if the
expression is false at the start.

REPEAT... UNTIL (condition) : The REPEAT keyword starts a control loop that is
always executed at least once, and which terminates when the condition is satisfied.
Example :
REPEAT
 write('Type Q to quit');

read(c);
UNTIL (c='Q');
Break the loop when the Q character is typed on the keyboard.

Vocabulary
Algorithm Algorithme

function fonction

key clé / touches dans le cas d'un clavier

keyboard clavier

programming language langage de programmation

a prompt une invite (de commande par exemple)

step by step étape par étape

string (of letters) chaîne de caractères

